# FAA's Airport Pavement Test Vehicle – Need, Capability, and Future Research

Presented to: 2014 FAA Worldwide Airport

**Technology Transfer Conference** 

By: Navneet Garg, Ph.D.

Date: August 6, 2014





#### **Aircraft Tire Pressure Trends**

- The trend in aircraft industry is to produce aircraft with extended range capability - results in high gross weight and tire pressures.
- ICAO 'X' category limit was 217-psi.
- Boeing 787 and Airbus 350 will have tire pressures close to 250 psi.

#### **Aircraft Tire Pressure Trends**

#### Proposed X Category Limit





# **Changes to ICAO Tire Pressure Categories**

| Tire Pressure<br>Category | Previous ICAO Limits<br>psi (MPa), loaded | New ICAO Limits psi<br>(MPa), loaded |
|---------------------------|-------------------------------------------|--------------------------------------|
| W                         | Unlimited                                 | Unlimited                            |
| X                         | 217 (1.50)                                | 254 (1.75)                           |
| Y                         | 145 (1.0)                                 | 181 (1.25)                           |
| Z                         | 72 (.50)                                  | 72 (.50)                             |

#### **NEED FOR APTV/HTPTF**

- To develop new specifications for P-401 (based on gyratory compactor) and other HMA related projects, R&D has relied mostly on laboratory testing. Full-scale tests are needed so that the performance prediction models for HMA from laboratory tests can be validated/calibrated to the in-situ pavements.
- NAPTF ideal for testing pavement structure as a whole, not for surface layers.

APTV/HTPTF WILL PROVIDE THAT CAPABILITY.

# APTV/HVS-A



#### **AIRPORT PAVEMENT TEST VEHICLE**

#### Heavy Vehicle Simulator – Airport Version (HVS-A)

- Wheel loads up to 100,000 lbs.
- Pavement temperatures up to 150°F
- Test speeds 0.17 to 5 mph
- Single and Dual-Wheel configuration.
- Single wheel will be radial aircraft tires size 52x21.0R22
- Dual wheel assembly is designed to accommodate smaller tires (B-737-800)
- Wander Width 6 feet
- FAA Acceptance November 1, 2013



# **HVS-A Test Pavement**



# **HVS-A Acceptance Test Strips**



#### **HVS-A Acceptance Test Strips**



PAVEMENT CROSS-SECTION

# **HVS-A Acceptance Test Strips**



#### **HVS-A TS: Response and Traffic Tests**

#### INSTRUMENTATION LAYOUT FOR HVS-A SITE ACCEPTANCE TEST STRIPS



#### **HVS-A ACCEPTANCE TEST STRIPS**

#### Objectives:

 Study the effects of Tire Pressure on performance of HMA layer.

#### Tests:

- Response Tests.
- Traffic Tests.



#### **HVS-A TS: RESPONSE TESTS**

- Tire pressure: 210-psi Test Strip-1
  245-psi Test Strip-2
- Pavement Temperature: 140 deg. F measured at a depth of 1-inch below pavement surface.
- Test Speed: 2-mph
- Wheel loads: 30,000-lbs, 40,000-lbs, 50,000-lbs.

#### **HVS-A TS: TRAFFIC TESTS**

- Tire pressure: 210-psi Test Strip-1
  245-psi Test Strip-2
- Pavement Temperature: 140 deg. F measured at a depth of 1-inch below pavement surface.
- Test Speed: 2-mph
- Wheel loads: 61,300-lbs.

#### **HVS-A TS: Wander Pattern**

| Sequence No. | Track No. | Transverse Wander<br>Position, in |
|--------------|-----------|-----------------------------------|
| 1            | -2        | 16                                |
| 2            | -2        | 16                                |
| 3            | 0         | 36                                |
| 4            | 0         | 36                                |
| 5            | 2         | 56                                |
| 6            | 2         | 56                                |
| 7            | 1         | 46                                |
| 8            | 1         | 46                                |
| 9            | -1        | 26                                |
| 10           | -1        | 26                                |
| 11           | 0         | 36                                |
| 12           | 0         | 36                                |
| 13           | 1         | 46                                |
| 14           | 1         | 46                                |
| 15           | -1        | 26                                |
| 16           | -1        | 26                                |
| 17           | 0         | 36                                |
| 18           | 0         | 36                                |



# **HVS-A TS: Response and Traffic Tests**





## **HVS-A TS: Response and Traffic Tests**





#### **HVS-A TS: Response Tests**



#### **HVS-A TS: Response Tests**



### **HTPTF-Construction Cycle 1**

#### Objectives:

- Study the effects of Tire Pressure on performance of HMA layer.
- Study the effect of polymer modified binder on HMA layer performance.
- Evaluate the performance of Warm Mix Asphalt under aircraft wheel load.

#### **MATERIAL**

# TIRE PRESSURE

#### BINDER TYPE



TOTAL AREA = 102,600 sq. feet (2.36 acres)



### **HTPTF Cross Sections**



#### **Future Research**

- "Green" technologies such as Warm Mix Asphalt
- Stone Matrix Asphalt
- Recycled Asphalt Pavement
- Polymer Modified Binders
- Shear failure of HMA
- Performance of HMA overlays on
  - Flexible Pavements
  - Rigid Pavements

#### **Future Research**

# Use of Additives and Nanoparticles to Improve Performance of Airport Pavement Materials

- Evaluate the use of Additives and Nanoparticles for Improved Performance of Airport Pavement Materials
- Develop Standards/Specifications and Guidelines for Pavement Materials that have been modified with Nanoparticles and other Additives.



























